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RESUMO 

SHIROMA, LUKAS HITOSHI. Simulação de uma ramificação de Gasodutos 

utilizando o paradigma da Programação Orientada a Objetos. 2020. 

Trabalho de Conclusão de Curso (Graduação em Engenharia de Petróleo) - 

Escola Politécnica da Universidade de São Paulo, Santos, 2020. 

 

Muitas plataformas que produzem gás natural necessitam interromper sua 

produção por não conseguir injetar o gás no reservatório ou armazenar todo o 

gás produzido. Diante desse cenário, o estudo do escoamento de gás se faz 

pertinente para a construção de gasodutos que ligam as plataformas offshore 

com a costa brasileira. 

Neste trabalho foi desenvolvido um código de programação em Python 

utilizando o paradigma da Programação Orientada a Objetos para simular o 

escoamento em gasodutos, partindo da validação através de um escoamento 

mais simples, onde é possível analisar resultados para diferentes condições de 

escoamento, em um duto simples e em dutos em série. Posteriormente, 

aplicou-se o modelo implementado computacionalmente a uma ramificação de 

gasodutos. 

O método utilizado para simular o escoamento não convergiu para o caso mais 

complexo analisado, porém, a programação orientada a objetos foi de grande 

valor para o desenvolvimento do código.  



 
   
 

 
   
 

ABSTRACT 

SHIROMA, LUKAS HITOSHI. Simulation of a gas pipeline branch using the 

Object Oriented Programming paradigm. 2020. Undergraduate thesis  

(Graduate in Petroleum Engineering) - Escola Politécnica da Universidade de 

São Paulo, Santos, 2020. 

 

Many platforms that produce natural gas need to stop production because they 

are unable to inject the gas into the reservoir or store all the gas produced. 

Given this scenario, the study of gas flow is pertinent to the construction of gas 

pipelines that connect offshore platforms with the Brazilian coast. 

In this work, a Python programming code was developed using the Object 

Oriented Programming paradigm to simulate the flow in pipelines, starting from 

the validation through a simpler flow, where it is possible to analyze results for 

different flow conditions, in a simple duct and in series pipelines. Subsequently, 

the computationally implemented model was applied to a pipeline branch. 

The method used to simulate the flow did not converge to the most complex 

case analyzed, however, object-oriented programming was of great value for 

the development of the code.  
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1. INTRODUÇÃO 

Em 2020, a pandemia da COVID-19 impactou diversos setores do Brasil 

e o setor de óleo e gás não foi exceção. Segundo dados do Ministério de Minas 

e Energia (MME) e da Agência Nacional do Petróleo, Gás Natural e 

Biocombustíveis (ANP), a produção do petróleo cru e de gás natural 

comercializável caiu 5,1% do primeiro trimestre de 2020 para o segundo (ANP; 

MME, 2020). O que contrasta com a maior participação da Petrobras no 

mercado durante o mesmo período (de 84,5% para 88,2%) (ANP, 2020). 

 Segundo dados da Empresa de Pesquisa Energética (EPE), o gás 

natural representa 13,0% da matriz energética no Brasil e 22,1% no planeta. 

Esses dados revelam a importância dessa fonte energética para suprir as 

necessidades atuais, sendo a segunda fonte de energia brasileira, ficando atrás 

apenas do petróleo (EPE, 2017). 

Ainda segundo a EPE, 13 GW da matriz elétrica nacional é proveniente 

de usinas termelétricas a gás natural, o que representa cerca de 8% da 

capacidade instalada no Brasil. Grande parte da demanda de gás natural 

brasileira é destinada ao atendimento do setor elétrico (EPE, 2018). 

Atualmente, o gás natural, composto por frações leves de 

hidrocarbonetos, possui um papel importante na possível transição da fonte 

energética brasileira. Contudo, para abastecer e entregar o gás com normas de 

segurança estabelecidas pela ANP de maneira rentável, é preciso que haja a 

expansão da rede de gasodutos continental.  

Analisando o cenário energético atual e os gasodutos existentes (Figura 

1), é necessário o estudo do escoamento para o desenvolvimento de projetos 

futuros. As plataformas da Bacia de Santos possuem uma rede de gasodutos 

que ligam os campos de produção ao continente. Apesar de toda a 

infraestrutura existente, essa estrutura não suporta toda a produção de gás 

natural offshore e, muitas vezes, as plataformas devem interromper sua 

produção por problemas no escoamento do gás, já que, em alguns casos, não 

se pode re-injetar ou queimar o gás em sua totalidade. 
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Figura 1 - Rede de gasodutos do Pré-Sal. Fonte: Petrobrás (2019) 

Neste trabalho, desenvolveu-se uma simulação das características do 

escoamento do gás em uma ramificação de gasodutos utilizando a 

programação orientada a objetos com a apresentação e discussão dos 

resultados. A metodologia utilizada parte da validação inicial para um 

escoamento em um duto simples e comparando os resultados obtidos com os 

valores presentes na literatura. Validados os resultados, há o incremento 

gradual da complexidade até a implementação do método em uma ramificação. 
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1.1. OBJETIVOS 

O objetivo principal do trabalho é o desenvolvimento de um código 

computacional em Python para simular uma ramificação de gasodutos 

utilizando o paradigma da programação orientada a objetos. 

A partir da simulação de um escoamento simples, um gasoduto retilíneo 

sem perdas de carga singulares e com valores iniciais das pressões nas 

extremidades do duto, validar o procedimento pela comparação dos resultados 

obtidos com os resultados presentes na literatura. 

Em seguida, simular o escoamento a partir de dados em apenas uma 

das extremidades do duto, mantendo-se as mesmas condições da validação 

anterior. Posteriormente, variar pontualmente o diâmetro com a manutenção 

das condições de contorno do escoamento. 

Com a validação de todos os casos anteriores, é possível a simulação 

de um escoamento em uma ramificação e avaliar os resultados obtidos.   
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2. REVISÃO BIBLIOGRÁFICA 

A bibliografia destaca a relevância do gás como fonte de energia. Essa 

análise é reforçada pela problemática da produção de gás em alto mar, onde a 

estocagem ou transporte se tornam problemas relevantes. 

 2.1. FUNDAMENTAÇÃO TEÓRICA 

Para Benner et al. (2018) a importância do tema aumenta com a 

ampliação do caso de uso para aplicações mais complexas. O trabalho 

apresenta a descrição da física dos dutos e de redes de gasodutos. A 

discretização espacial do problema é aplicada a quatro redes diferentes de 

quatro complexidades diferentes. As diferentes complexidades facilitam a 

compreensão do problema em redes mais simples e o gradual aumento da 

complexidade permite comparar os resultados com o esperado fisicamente. Ao 

fim do texto, os códigos e dados estão disponíveis e complementam toda a 

teoria apresentada. 

Arakaki, T. K. (2017) simulou redes de gasodutos do Gasoduto Bolívia-

Brasil (GASBOL) a partir de ferramentas computacionais existentes no 

mercado (HYSYS® e iiSE). Utilizando delas para simular gasodutos longos e 

lineares, e para simular redes complexas. Foram feitas as avaliações das 

equações de estado na simulação de rede de gasodutos. 

De maneira geral, Costa et al. (1998) descrevem o algoritmo numérico 

para simulação da rede de dutos para fluidos compressíveis. O modelo é 

composto por um sistema de equações lineares e não-lineares, resolvidos pelo 

método de Newton-Raphson associados à sequência de substituições 

sucessivas. O modelo pode prever pressões, vazões, temperaturas e 

composição gasosa em qualquer ponto da rede. Os resultados estão de acordo 

com as referências e literaturas em análise, implicando na eficácia do método 

aplicado. Com isso, é possível a utilização dos resultados para validar os 

cálculos e sistemas desenvolvidos por outros métodos, mantendo-se as 

condições necessárias. 
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Oosthuizen, P. H. e Carscallen, W. E. (2014) descrevem o escoamento 

isotérmico em um duto de área constante, incluindo os aspectos de fricção. O 

transporte de gases por gasodutos longos que não são isolados termicamente, 

podem ser considerados aproximadamente isotérmicos. Esta condição implica 

na premissa de que o escoamento não é adiabático, pois, apesar da baixa taxa 

de transferência de calor, a longa extensão do escoamento implica que efeitos 

de fricção não podem ser desprezados. Com a densidade (𝜌), volume (𝑉), 

pressão (𝑝) e área (𝐴), descreve-se o escoamento pelas equações de 

conservação de massa (1), quantidade de movimento (2) e energia (3) e, 

também, da lei dos gases ideais (4). 

!"
!
+ !"

!
= 0    (1) 

𝑑𝑝 + 𝜏!
!
!
𝑑𝑥 + 𝜌𝑉𝑑𝑉 = 0  (2) 

𝑑𝑞 = 𝑉𝑑𝑉  (3) 

!"
!
= !"

!
  (4) 

Com 𝑓 o fator de fricção do duto e 𝑣 a velocidade, a tensão de 

cisalhamento na parede do duto, 𝜏!, é descrita por: 

𝜏! =
!"!!

!
 (5) 

2.2. ESCOAMENTO COMPRESSÍVEL ISOTÉRMICO EM REDE 

Para o desenvolvimento do escoamento compressível na rede de dutos, 

a estrutura geral do projeto é montada sobre gasodutos, como desenvolvido 

por Costa et al. (1998) e Oosthuizen e Carscallen (2014) 

2.2.1. GASODUTOS 

Desconsiderando-se os efeitos de escoamentos multifásicos e críticos e 

baseando-se na equação de energia, a equação da vazão volumétrica utilizada 

para escoamentos compressíveis em gasodutos unidimensionais, os cálculos 
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em dutos com fricção, simples e isotérmicos seguem as descrições de 

Oosthuinzen e Carscallen (2014). 

Como ponto de partida, busca-se obter as propriedades do duto em 

questão. Portanto, é necessário o cálculo da área, 𝐴, da seção transversal do 

duto em função do diâmetro 𝐷: 

𝐴 = !"!

!
  (6) 

Em seguida, para se obter as características das perdas por fricção do 

duto: 

𝐹𝑎𝑛𝑛𝑜 = !!"
!

 (7) 

Com o diâmetro da seção transversal 𝐷, comprimento do duto 𝐿 e o fator 

de fricção 𝑓. 

Com base no modelo de gás ideal, descreve-se o fluido a partir de seu 

coeficiente de expansão adiabática 𝑘 e a massa molar 𝑀 de modo a se 

encontrar a constante 𝑅!"#$%& e a capacidade térmica 𝐶! do fluido em questão: 

𝑅𝑓𝑙𝑢𝑖𝑑𝑜 =
!
𝑀 (8) 

𝑐𝑝 =
𝑘𝑅𝑓𝑙𝑢𝑖𝑑𝑜
𝑘−1  (9) 

Com 𝑅 sendo a constante universal dos gases. 

A partir da condição de pressão 𝑝 temperatura 𝑇 e do fator de 

compressibilidade 𝑍 em um determinado ponto do escoamento, é possível 

obter a densidade 𝜌 e a velocidade do som 𝑐 nesse mesmo ponto: 

𝜌 = !
𝑍!!"#$%&!

 (10) 

𝑐 = 𝑘𝑅!"#$%&𝑇 (11) 

Utilizando o modelo de Darcy para cisalhamento, é possível obter:  
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𝑑𝑝
𝑝 +

𝜌𝑣2

𝑝
2𝑓
𝐷 𝑑𝑥+

𝜌𝑣
𝑝 𝑑𝑣 = 0 (12) 

Pela relação do número de Mach (𝑀): 

𝑀 = !
!
 (13) 

Pode-se obter a seguinte relação: 

𝑑𝑣
𝑣 = − 𝑑𝜌

𝜌 =
𝑑𝑀
𝑀 = − 𝑑𝑝

𝑝 =
𝑘𝑀2

1−𝑘𝑀2
2𝑓
𝐷 𝑑𝑥 (14) 

Pelo fator no denominador, é possível notar que o ponto crítico, ou Mach 

crítico (𝑀!"#$), é em: 

𝑀!"#$ =
1
𝑘
 (15) 

Utilizando na conservação de energia e na relação de entropia: 

𝑑𝑞
𝑣2 =

𝑑𝑣
𝑣 =

𝑘𝑀2

1−𝑘𝑀2
2𝑓
𝐷 𝑑𝑥 (16) 

 

𝑑𝑠
𝑐𝑝𝑇

= − 𝑘−1
𝑘

𝑘𝑀2

1−𝑘𝑀2
2𝑓
𝐷 𝑑𝑥 (17) 

Com as propriedades de estagnação podendo ser obtidas das relações 

isentrópicas locais: 

𝑇0
𝑇0
∗ =

1+𝑘−12 𝑀2

1+𝑘−12𝑘
   (18) 

 

𝑃0
𝑃0
∗ = 1

𝑀 𝑘
1+𝑘−12 𝑀2

1+𝑘−12𝑘

𝑘
𝑘−1

 (19) 

Buscando-se aproximar os cálculos de processos reais, Costa et al. 

(1998) propuseram a idealização de três casos de escoamento: isotérmico, 
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adiabático e politrópico. Essas idealizações também são utilizadas nas 

equações de energia, definida pelo balanço energético em regime permanente 

num duto. 

Por fim, a vazão mássica é obtida através da seguinte relação: 

𝑚 = 𝜌𝑀𝑐𝐴 (20) 

Em dutos extensos, é necessário o cálculo em frações menores para se 

diminuir possíveis erros acumulados causados por aproximações numéricas. 

2.3. PROGRAMAÇÃO ORIENTADA A OBJETOS 

A programação orientada a objetos (POO) baseia-se nos conceitos de 

objetos, referência à uma alocação de memória com determinado valor com 

métodos e atributos, e classes, conjunto de características e comportamentos 

que definem os objetos. 

 2.3.1. CLASSES 

Para o desenvolvimento do sistema, foram definidas as classes que são 

utilizadas para referenciar objetos. Esse método permite a reutilização do 

código para cada exemplo a ser implementado, sendo desnecessária a 

repetição da mesma porção de código a cada nova geração de um novo objeto. 

Além disso, é possível obter os valores de propriedades específicas de 

cada objeto de maneira mais clara e didática. 

2.3.2. OBJETOS  

Definidas as classes, cada objeto é referenciado com a inclusão de 

parâmetros que definem as características atribuídas e calculadas. Os objetos 

permitem a fácil navegação por essas propriedades físicas do problema. 
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2.4. MÉTODO NUMÉRICO PARA SIMULAÇÃO 

O método utilizado para a simulação é baseado na definição das 

equações de escoamentos compressíveis descritas por Oosthuizen, P. H. e 

Carscallen, W. E. (2014) ((1), (2), (3) e (4)). Definidos os sistemas de equações 

e as condições de contorno, a resolução do sistema é realizada utilizando o 

método optimize.fsolve da biblioteca SciPy v1.5.4 do Python.  

 2.4.1. FUNÇÃO FSOLVE 

O método fsolve encontra as raízes de uma função ou de um sistema de 

equações não-lineares, partindo de um dado palpite inicial. 

A função recebe como argumentos um arranjo com os palpites iniciais 

para cada variável e uma tupla (lista imutável) com as condições de contorno 

de cada equação. Como retorno, a função retorna um arranjo com as soluções 

numéricas encontradas. 

Quando o palpite inicial destoa em determinado nível dos valores das 

raízes, o método numérico para encontrar as soluções não converge, o que 

implica na escolha de um bom palpite inicial para se encontrarem as soluções. 

Em casos mais complexos, a escolha de um bom palpite inicial é muito 

sensível e por uma diferença baixa em relação ao resultado, o método não 

consegue encontrar as soluções.  
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3. METODOLOGIA 

3.1. ESTRUTURAÇÃO DO SISTEMA COMPUTACIONAL 

Para estruturar o sistema na lógica computacional e, de maneira 

numérica, possibilitar que o mesmo encontre uma solução plausível (próxima 

dos valores encontrados na literatura) para o problema, as entidades e seus 

atributos são declarados seguindo o paradigma da Programação Orientada a 

Objetos em uma linguagem voltada para essa construção: Python. 

Os dutos, fluidos e condições são instanciados como classes e cada 

uma possui um conjunto de características (atributos) que descrevem esses 

objetos. Além deste grupo de objetos, há, também, funções referentes aos nós 

e aos números de Mach, que recebem as propriedades dos objetos como 

parâmetros de entrada. 

A classe de dutos apresenta as características de comprimento, 

diâmetro e fator de fricção e, a partir delas, é calculado o valor de área da 

seção circular e do coeficiente de Fanno (7).  

Os fluidos recebem valores de viscosidade, massa molar e calor 

específico e dessas propriedades obtêm-se os valores de capacidade térmica 

(7) e da constante R (8) para o fluido em questão. 

A classe de condições, que se refere às condições físicas em 

determinado ponto de um certo duto com um certo fluido, herda todas as 

propriedades dos fluidos e dutos, além delas, a classe recebe, também, 

propriedades de pressão e temperatura. Com todas essas características 

atribuídas, é possível calcular a densidade do fluido (10) e a velocidade do som 

(11). 

Para o primeiro caso, de um duto simples e escoamento isotérmico e 

compressível, foram realizadas validações iniciais do modelo para seguir com o 

incremento da complexidade até a formulação do escoamento em uma 

ramificação. 
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3.2. CASOS E VALIDAÇÕES 

Em seguida, são apresentados e detalhados os casos em ordem de 

desenvolvimento e com aumento gradual de complexidade, de maneira a 

validar de maneira sincronizada com o modelo computacional desenvolvido. 

Em todos os casos, utilizam-se os seguintes valores conhecidos de fator 

de fricção, massa molar, calor específico e temperatura: 

Tabela 1: Parâmetros comuns aos casos apresentados e seus respectivos valores. 

𝑓	
   0,004 fanning 

𝑀!!!  16 g / mol 

𝑘 1,3 

𝑇 283 K 

Z 1 

3.2.1. DUTO SIMPLES ISOTÉRMICO 

Como ponto de partida do projeto, é realizado o desenvolvimento em um 

caso simplificado do escoamento: um duto de área constante com perdas e 

escoamento isotérmico e compressível. A escolha dessa estrutura é devida à 

sua complexibilidade menor, de modo a validar os cálculos iniciais. 

Para a validação, é possível comparar os resultados com a solução 

analítica desenvolvida por Oosthuinzen e Carscallen (2014). 

 3.2.1.1. PRESSÕES EM AMBAS AS EXTREMIDADES 

O primeiro caso desenvolvido tem como valores conhecidos as pressões 

nas duas extremidades do duto, a partir destes dados iniciais, obtém-se os 

números de Mach e a vazão mássica do escoamento. 
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Figura 2: Ilustração do escoamento simples com as pressões como valores de entrada 

para a formulação do escoamento, com p_1_e e p_1_s a pressão do duto 1 na 

entrada e saída. 

Utilizando o modelo de Oosthuizen e Carscallen (2014) e os seguintes 

valores como condição de contorno, buscou-se encontrar os valores do número 

de Mach para a entrada e para a saída e a vazão mássica do duto: 

Tabela 2: Valores conhecidos das pressões nas extremidades, comprimento e 

diâmetro do duto. 

𝑝_!_! 1.085.000 Pa 

𝑝_!_! 150.000 Pa 

𝐿_! 3.000 m 

𝐷_! 0,1 m 

 

Os resultados são validados com os valores presentes na literatura. O 

acerto dos procedimentos para os cálculos referidos permite o prosseguimento 

para os casos seguintes. 

 3.2.1.2. PRESSÃO E MACH EM UMA DAS EXTREMIDADES 

Neste caso, são utilizados os valores de Mach e pressão em apenas 

uma extremidade do duto, toda a formulação busca encontrar os valores de 

pressão e Mach da outra extremidade e o valor da vazão mássica do 

escoamento. 
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Figura 3: Ilustração do escoamento simples com a pressão e Mach em uma das 

extremidades como valores de entrada para a formulação do escoamento. Sendo 

p_2_e e M_2_e a pressão e o Mach na entrada do duto 2. 

Tabela 3: Valores conhecidos da pressão e Mach em uma das extremidades, 

comprimento e diâmetro do duto. 

𝑝_!_! 1.085.000 Pa 

𝑀_!_! 0,039485 

𝐿_! 3.000 m 

𝐷_! 0,1 m 

 

Neste caso os palpites iniciais para a pressão e Mach na saída são da 

mesma ordem de grandeza da pressão e Mach de entrada. 

3.2.2. DUTOS ISOTÉRMICOS EM SÉRIE 

Para dutos isotérmicos com fricção em série, são dadas as pressões das 

extremidades da sequência e, entre um duto e outro, variam-se os valores de 

diâmetro, fator de fricção e comprimento, de modo a verificar se as variações 

dos resultados são condizentes com o esperado fisicamente. 

 

Figura 4: Dois dutos ligados em série com valores das pressões nas extremidades 

como entrada. Sendo p_3_e a pressão na entrada do duto 3 e p_4_s a pressão de 

saída do duto 4. 
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Tabela 4: Valores conhecidos da pressão e Mach em uma das extremidades, 

comprimentos e diâmetros dos dutos 

𝑝_!_! 1.085.000 Pa 

𝑝_!_! 150.000 Pa 

𝐿_!, 𝐿_! 1.500 m 

𝐷_! 0,1 m 

𝐷_! 0,05 m 

 

A resolução do problema passa pelos palpites iniciais das pressões de 

saída do primeiro duto e entrada do segundo. Esses palpites são as médias 

entre as pressões das extremidades. Para os palpites de Mach, o valor é um 

décimo do Mach crítico para o escoamento. 

Esse caso passou pela validação que mimetiza o caso do duto simples 

com as pressões das extremidades e em seguida, atribuiu-se a variação do 

diâmetro em um dos dutos. 

3.2.3. RAMIFICAÇÃO DE DUTOS ISOTÉRMICOS 

Com todas as validações anteriores, é possível formular as equações 

necessárias para a simulação do escoamento em uma ramificação de dutos. 

Para 𝑖 ∈ 5;   7 , descrevem-se (21) e (22) que compõem 6 das equações 

do sistema para encontrar os números de Mach das extremidades e as 

pressões do nó. 

!!!!!_!
!

!!!_!
! + ln 𝑘𝑀!_!

! = !!!!!_!
!

!!!_!
! +    ln 𝑘𝑀!_!

! + !!!!!
!!

 (21) 

𝑀!_! .𝑝!_! = 𝑀!_!.𝑝!_! (22) 
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A conservação de massa no nó é descrita por: 

 𝑀!_!.𝐷!!.𝑝!_! = 𝑀!_! .𝐷!!.𝑝!_! +𝑀!_! .𝐷!!.𝑝!_! (23) 

Da relação (14), obtém-se: 

 𝑀!_!.𝑝!_! = 𝑀!_! .𝑝!_! (24) 

 𝑀!_!.𝑝!_! = 𝑀!_! .𝑝!_! (25) 

 

Figura 5: Ilustração de três dutos conectados por um nó com as pressões das 

extremidades como valores de entrada. Sendo p_5_e a pressão na entrada do duto 5 

e p_6_s e p_7_s as pressões nas saídas dos dutos 6 e 7. 

Tabela 5: Valores conhecidos das pressões nas extremidades, comprimentos e 

diâmetros dos dutos. 

𝑝_!_! 1.085.000 Pa 

𝑝_!_! 150.000 Pa 

𝑝_!_! 150.000 Pa 

𝐿_!, 𝐿_!, 𝐿_! 1.500 m 

𝐷_!,𝐷_!,𝐷_! 0,1 m 
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Nesse caso, a convergência do método para encontrar as raízes das 

equações é extremamente sensível ao palpite inicial. Um bom palpite inicial 

permite a convergência do método e um palpite ruim implica na não-

convergência do mesmo. 

4. RESULTADOS 

Nesta seção, são descritos os resultados de cada caso apresentado na 

formulação do problema. 

4.1. DUTO SIMPLES ISOTÉRMICO 

Para o duto simples isotérmico, foram utilizadas duas condições de 

contorno diferentes para se validar o modelo. 

Nos dois casos, são utilizados valores equivalentes para se afirmar a 

validade dos cálculos. 

 4.1.1. PRESSÕES EM AMBAS AS EXTREMIDADES 

Os valores do número de Mach, utilizados como palpites iniciais, são 

metade dos valores calculados do Mach crítico:  

𝑀!"#$  /  2   ≅   0,438529  

Os valores de Mach de entrada e saída são, respectivamente:  

𝑀_!_!   ≅   0,039485  e    

𝑀_!_!   ≅   0,285610  

Como resultado, o valor de vazão mássica é:  

𝑚   ≅   1,000404  𝑘𝑔/𝑠  

Os valores dos números de Mach de entrada e saída e o valor de vazão 

mássica condizem com os valores obtidos por Oosthuizen e Carscallen (2014). 
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Esse é um indicativo da validade do modelo e, sendo assim, é possível utilizá-

lo no caso seguinte. 

 4.1.1. PRESSÃO E MACH EM UMA DAS EXTREMIDADES 

Os palpites iniciais para encontrar os valores da pressão e do número de 

Mach da outra extremidade são um décimo da pressão e dez vezes o Mach da 

outra extremidade.  

Os valores de Mach e pressão na saída são, respectivamente:  

𝑝_!_!   ≅   150.000  𝑃𝑎  e    

𝑀_!_!   ≅   0,285610  

Como resultado, o valor de vazão mássica é:  

𝑚   ≅   1,000404  𝑘𝑔/𝑠  

Os valores da pressão e número de Mach da saída e o valor de vazão 

mássica condizem com os valores obtidos por Oosthuizen e Carscallen (2014) 

e com os valores obtidos no caso anterior. A confirmação é importante para 

validar os todos os cálculos utilizados até o momento. E com essa validação, é 

possível seguir com o incremento da complexidade do problema. 

 4.2. DUTOS ISOTÉRMICOS EM SÉRIE 

Para os valores iniciais das pressões e dos números de Mach são 

utilizadas a média das pressões e um décimo do Mach crítico, 

respectivamente.  

Os  valores  de  Mach  e  pressões  são:    

𝑝_!_!   ≅   1.073.553,24  𝑃𝑎,    

𝑀_!_!   ≅   0,008202,  

𝑀_!_!   ≅   0,008289,    
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𝑝_!_!   ≅   268.388,31  𝑃𝑎,  

𝑀_!_!   ≅   0,033156  e    

𝑀_!_!   ≅   0,059324  

Como resultado, o valor de vazão mássica é:  

𝑚   ≅   0,207796  𝑘𝑔/𝑠  

Os valores obtidos para as pressões, Mach e vazões mássicas são 

fisicamente condizentes. Como a validação inicial mimetizando o primeiro caso 

foi confirmada, o método utilizado para a resolução dos cálculos é acertado. 

 4.3. RAMIFICAÇÃO DE DUTOS ISOTÉRMICOS 

Para os palpites iniciais, foram utilizados diversos valores buscando a 

convergência do método numérico para o sistema de equações não-lineares. 

Para os palpites dos números de Mach do duto 5, utilizaram-se valores 

da mesma ordem de grandeza dos valores obtidos nos casos anteriores. Como 

os casos anteriores passaram pela validação com os valores da literatura, 

esses valores são palpites com uma boa acurácia, de mesma ordem de 

grandeza. 

𝑀_!_!   ≅ 0,039485,  

𝑀_!_!   ≅ 0,055171,  

Os palpites para as pressões no nó são as médias das pressões nas 

extremidades. 

𝑝_!"#   ≅   461.666,66  𝑃𝑎,   

Já para os números de Mach dos dutos 6 e 7, os palpites iniciais 

seguiram a mesma lógica dos casos anteriores, utilizando valores derivados do 

Mach crítico. Nesse caso, variaram-se os valores buscando a convergência do 

método. 
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Porém, o método se mostrou extremamente sensível ao palpite inicial. 

Mesmo com uma série de palpites para os números de Mach dos dutos 6 e 7, o 

programa não encontrou raízes para o sistema. Nesse caso, nota-se que a 

complexidade influenciou bastante na sensibilidade dos palpites iniciais para se 

determinar os valores que aproximam o sistema de suas raízes. 
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5. CONCLUSÕES 

A utilização da programação orientada a objetos facilita na compreensão 

e análise da formulação dos problemas. Com cada objeto e suas propriedades 

mapeadas, é possível realçar cada propriedade em estudo no código fonte. 

Essa análise é importante para simplificar o entendimento da programação e 

como ela se liga ao assunto em questão. No escopo deste trabalho, a POO 

permitiu a navegação pelas propriedades dos dutos e fluidos de maneira 

intuitiva. Essa navegação é importante para se entender como cada 

propriedade se comporta em cada objeto. 

O método numérico utilizado para a resolução das equações não-

lineares se mostrou eficiente até certo ponto. Porém, ao se aumentar a 

complexidade do sistema de equações, o método se mostrou muito 

dependente da escolha de um bom palpite inicial para as iterações. Nos casos 

em que o palpite inicial não se aproximava das raízes do sistema, o método 

não convergia para uma solução plausível. 

Para os próximos passos, é de extrema importância a definição entre: 

trocar o método numérico para a resolução dos sistemas de equações ou 

definir uma metodologia acurada para a escolha dos palpites iniciais para o 

método numérico atual.  
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APÊNDICE 

import math 

from scipy.optimize import fsolve 

import numpy as np 

 

class Pipe(object): 

    def __init__(self, length, diameter, friction_factor,): 

        self.length = length 

        self.diameter = diameter 

        self.friction_factor = friction_factor 

 

    def area(self): 

        return(math.pi * self.diameter ** 2 / 4) 

 

    def fanno_flow(self): 

        return(4 * self.friction_factor * self.length / 

self.diameter) 

 

class Fluid(object): 

    def __init__(self, molar_mass, specific_heat_ratio): 

        self.molar_mass = molar_mass 

        self.specific_heat_ratio = specific_heat_ratio 

     

    def R_fluid(self): 

        return(8314.46261815324 / self.molar_mass) 

 

    def heat_capacity(self): 

        return(self.specific_heat_ratio * self.R_fluid() / 

(self.specific_heat_ratio - 1)) 

 

class Condition(Fluid, Pipe): 

    def __init__(self, pressure, temperature, fluid, pipe): 

        self.pressure = pressure 

        self.temperature = temperature 

        Fluid.__init__(self, fluid.molar_mass, 

fluid.specific_heat_ratio) 

        Pipe.__init__(self, pipe.length, pipe.diameter, 

pipe.friction_factor) 

 

    def density(self): 
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        return(self.pressure / (Fluid.R_fluid(self) * 

self.temperature)) 

 

    def sound_velocity(self): 

        return(math.sqrt(self.specific_heat_ratio * 

Fluid.R_fluid(self) * self.temperature)) 

 

temperature = 283 

friction_factor = .004 

molar_mass = 16 

specific_heat_ratio = 1.3 

 

fluid= Fluid(molar_mass, specific_heat_ratio) 

 

'''Duto Simples Isotermico Pressao e Mach da entrada''' 

 

def Case_2(vars, *Marg): 

    M_s, p_s = vars 

    p_e, M_e, k, pipe = Marg 

    f, L, D, F = pipe.friction_factor, pipe.length, pipe.diameter, 

pipe.fanno_flow() 

    return ( 

        (1 - k * M_e ** 2) / (k * M_e ** 2) + np.log(k * M_e ** 2)  

        - ((1 - k * M_s ** 2) / (k * M_s ** 2) + np.log(k * M_s ** 

2))  

        - F, 

        M_e * p_e - M_s * p_s 

        ) 

 

pressure_2_e = 1085000 

mach_2_e = 0.03948519639496014 

length_2 = 3000 

diameter_2 = .1 

 

pipe_2 = Pipe(length_2, diameter_2, friction_factor) 

condition_2_e = Condition(pressure_2_e, temperature, fluid, pipe_2) 

mass_flow_rate = ( 

    condition_2_e.density() * mach_2_e  

    * condition_2_e.sound_velocity() * pipe_2.area()) 

 

M_crit = (1 / specific_heat_ratio) ** 0.5 

Marg = (pressure_2_e, mach_2_e, specific_heat_ratio, pipe_2) 
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sol = fsolve(Case_2, (M_crit / 2, pressure_2_e / 10), args = Marg) 

 

print("p_2_s:", sol[1]) 

print("M_2_s:", sol[0]) 

print("m._2:", mass_flow_rate) 

 

'''Dutos em Série''' 

 

def Case_3(vars, *Marg): 

    M_1_e, M_1_s, M_2_e, M_2_s, p_1_s, p_2_e = vars 

    p_1_e, p_2_s, k, pipe_1, pipe_2 = Marg 

    f_1, L_1 = pipe_1.friction_factor, pipe_1.length 

    D_1, F_1 = pipe_1.diameter, pipe_1.fanno_flow() 

    f_2, L_2 = pipe_2.friction_factor, pipe_2.length 

    D_2, F_2 = pipe_2.diameter, pipe_2.fanno_flow() 

    return ( 

        (1 - k * M_1_e ** 2) / (k * M_1_e ** 2) + np.log(k * M_1_e 

** 2)  

        - ((1 - k * M_1_s ** 2) / (k * M_1_s ** 2) + np.log(k * 

M_1_s ** 2))  

        - F_1, 

        M_1_e * p_1_e - M_1_s * p_1_s, 

        M_1_s * D_1 ** 2 - M_2_e * D_2 ** 2, 

        (1 - k * M_2_e ** 2) / (k * M_2_e ** 2) + np.log(k * M_2_e 

** 2)  

        - ((1 - k * M_2_s ** 2) / (k * M_2_s ** 2) + np.log(k * 

M_2_s ** 2))  

        - F_2, 

        M_2_e * p_2_e - M_2_s * p_2_s, 

        M_1_s * p_1_s - M_2_e * p_2_e 

        ) 

 

pressure_3_e = 1085000 

length_3 = 1500 

diameter_3 = .1 

friction_factor_3 = .004 

 

pressure_4_s = 150000 

length_4 = 1500 

diameter_4 = .05 

friction_factor_4 = .004 
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pipe_3 = Pipe(length_3, diameter_3, friction_factor_3) 

pipe_4 = Pipe(length_4, diameter_4, friction_factor_4) 

condition_4_s = Condition(pressure_4_s, temperature, fluid, pipe_4) 

 

M_crit = (1 / specific_heat_ratio) ** 0.5 

p_avg = (pressure_3_e + pressure_4_s) / 2 

Marg = (pressure_3_e, pressure_4_s, specific_heat_ratio, pipe_3, 

pipe_4) 

x0 = (M_crit / 10, M_crit / 10, M_crit / 10, M_crit / 10, p_avg, 

p_avg) 

sol = fsolve(Case_3, x0, args = Marg) 

mass_flow_rate = ( 

    condition_4_s.density() * sol[3] *  

    condition_4_s.sound_velocity() * pipe_2.area()) 

 

print("p_3_s:", sol[4]) 

print("M_3_e:", sol[0]) 

print("M_3_s:", sol[1], "\n") 

print("p_4_e:", sol[5]) 

print("M_4_e:", sol[2]) 

print("M_4_s:", sol[3], "\n") 

print("m._3:", mass_flow_rate) 

 

'''Nó com 3 Dutos''' 

 

def Case_4(vars, *Marg): 

    M_1_e, M_1_s, M_2_e, M_2_s, M_3_e, M_3_s, p_1_s, p_2_e, p_3_e = 

vars 

    pressures, k, pipes = Marg 

    p_1_e, p_2_s, p_3_s = pressures[0], pressures[1], pressures[2] 

 

    f, L, D = [], [], [] 

    for pipe in pipes: 

        f.append(pipe.friction_factor) 

        L.append(pipe.length) 

        D.append(pipe.diameter) 

    f_1, f_2, f_3 = f[0], f[1], f[2] 

    L_1, L_2, L_3 = L[0], L[1], L[2] 

    D_1, D_2, D_3 = D[0], D[1], D[2] 

 

    return ( 
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        (1 - k * M_1_e ** 2) / (k * M_1_e ** 2) + np.log(k * M_1_e 

** 2)  

        - ((1 - k * M_1_s ** 2) / (k * M_1_s ** 2) + np.log(k * 

M_1_s ** 2))  

        - (4 * f_1 * L_1 / D_1), 

        M_1_e * p_1_e - M_1_s * p_1_s, 

        (1 - k * M_2_e ** 2) / (k * M_2_e ** 2) + np.log(k * M_2_e 

** 2)  

        - ((1 - k * M_2_s ** 2) / (k * M_2_s ** 2) + np.log(k * 

M_2_s ** 2))  

        - (4 * f_2 * L_2 / D_2), 

        M_2_e * p_2_e - M_2_s * p_2_s, 

        (1 - k * M_3_e ** 2) / (k * M_3_e ** 2) + np.log(k * M_3_e 

** 2)  

        - ((1 - k * M_3_s ** 2) / (k * M_3_s ** 2) + np.log(k * 

M_3_s ** 2))  

        - (4 * f_3 * L_3 / D_3), 

        M_3_e * p_3_e - M_3_s * p_3_s, 

        (M_1_s * D_1 ** 2 * p_1_s - M_2_e * D_2 ** 2 

        * p_2_e - M_3_e * D_3 ** 2 * p_3_e), 

        M_1_s * p_1_s - M_2_e * p_2_e, 

        M_1_s * p_1_s - M_3_e * p_3_e 

        ) 

 

pressure_5_e = 1085000 

length_5 = 1500 

diameter_5 = .1 

friction_factor_5 = .004 

 

pressure_6_s = 150000 

length_6 = 1500 

diameter_6 = .1 

friction_factor_6 = .004 

 

pressure_7_s = 150000 

length_7 = 1500 

diameter_7 = .1 

friction_factor_7 = .004 

 

pipe_5 = Pipe(length_5, diameter_5, friction_factor_5) 

pipe_6 = Pipe(length_6, diameter_6, friction_factor_6) 

pipe_7 = Pipe(length_7, diameter_7, friction_factor_7) 
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pipes = [pipe_5, pipe_6, pipe_7] 

 

M_crit = (1 / specific_heat_ratio) ** 0.5 

print("M_crit:", M_crit) 

Marg = ([pressure_5_e, pressure_6_s, pressure_7_s],  

        specific_heat_ratio, [pipe_5, pipe_6, pipe_7]) 

p_avg = (pressure_5_e + pressure_6_s + pressure_7_s) / 3 

print(p_avg) 

 

M = fsolve(Case_4, ( 

    0.03948519639496014, 

    0.055170881099778954, 

    M_crit, 

    M_crit * 3, 

    M_crit, 

    M_crit * 3, 

    776522.6372051436, 

    p_avg, 

    p_avg), args = Marg) 
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Resumo 
Neste trabalho foi desenvolvido um código de programação em Python para simular uma 

ramificação de gasoduto, partindo da validação através de um escoamento mais simples, onde é 
possível analisar resultados para diferentes condições de escoamento. Posteriormente, aplicou-se o 
modelo implementado computacionalmente a uma ramificação de gasodutos e os resultados foram 
analisados. 

Abstract 
In this work, a Python programming code was developed to simulate a pipeline branch, starting 

from the validation through a simpler flow, where it is possible to analyze results for different flow 
conditions. Subsequently, the computationally implemented model is applied to a branch of gas 
pipelines and the results were analyzed. 

Introdução 
Em 2020, a pandemia da COVID-19 impactou diversos setores do Brasil e o setor de óleo e gás não 

foi exceção. Segundo dados do Ministério de Minas e Energia (MME) e da Agência Nacional do 
Petróleo, Gás Natural (GN) e Biocombustíveis (ANP), a produção do petróleo cru e de gás natural 
comercializável caiu 5,1% do primeiro trimestre de 2020 para o segundo (ANP; MME, 2020). O que 
contrasta com a maior participação da Petrobrás no mercado durante o mesmo período (de 84,5% para 
88,2%) (ANP, 2020). 

 
Analisando o cenário energético atual e os gasodutos existentes, é necessário o estudo do 

escoamento para o desenvolvimento de projetos futuros. As plataformas da Bacia de Santos possuem 
uma rede de gasodutos que ligam os campos de produção ao continente. Apesar de toda a 
infraestrutura existente, essa estrutura não suporta toda a produção de gás natural offshore e muitas 
vezes, as plataformas devem que interromper sua produção por problemas no escoamento do gás, já 
que, em alguns casos, não se pode re-injetar ou queimar o gás em sua totalidade. 

 
Neste trabalho, desenvolveu-se a simulação das características do escoamento do gás em uma 

ramificação de gasodutos utilizando o paradigma da programação orientada a objetos com a 
apresentação e discussão dos resultados. A metodologia utilizada parte da validação inicial em um 



 
   
 

 
   
 

escoamento em um duto simples com o incremento gradual da complexidade até a implementação da 
simulação do escoamento em uma ramificação. 

 

Metodologia 
Para estruturar o sistema na lógica computacional e, de maneira numérica, possibilitar que o mesmo 

encontre uma solução plausível para o problema, as entidades e seus atributos são declarados seguindo 
o paradigma da Programação Orientada a Objetos em Python 3. 

 
Os dutos, fluidos e condições são instanciados como classes e cada uma possui um conjunto de 

características (atributos) que descrevem esses objetos. Além deste grupo de objetos, há, também, 
funções referentes aos nós e aos números de Mach, que recebem as propriedades dos objetos como 
parâmetros de entrada. 

 
Os fluidos recebem valores de massa molar e calor específico e dessas propriedades obtêm-se os 

valores de capacidade térmica [Eq. (1)] e da constante R [Eq. (2)], descritas por Carscallen (2014), 
para o fluido em questão. 

 𝑐𝑝 =
𝑘𝑅𝑓𝑙𝑢𝑖𝑑𝑜
𝑘−1    (1) 

 𝑅𝑓𝑙𝑢𝑖𝑑𝑜 =
𝑅𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙

𝑀  (2) 
A classe de condições, que se refere às condições físicas em determinado ponto de um certo duto 

com um certo fluido, herda todas as propriedades dos fluidos e dutos, além delas, a classe recebe, 
também, propriedades de pressão e temperatura. Com todas essas características atribuídas, é possível 
calcular a densidade do fluido [Eq. (3)] e a velocidade do som [Eq. (4)]. 

 𝜌 = !
!!"#$%&!

   (3) 

 𝑐 = 𝑘𝑅!"#$%&𝑇   (4) 
Para o primeiro caso, de um duto simples e escoamento isotérmico e compressível, foram realizadas 

validações iniciais do modelo para seguir com o incremento da complexidade até a formulação do 
escoamento em uma ramificação. 

 
Figura 1 – Ramificação de gasodutos com pressões nas extremidades. 

Das propriedades de estagnação, a seguinte relação é base para se encontrar as pressões ou o 
número de Mach: 

 𝑃0
𝑃0
∗ = 1

𝑀 𝑘
1+𝑘−12 𝑀2

1+𝑘−12𝑘

𝑘
𝑘−1

 (5) 



 
   
 

 
   
 

Pode-se obter a vazão mássica por: 
 𝑚 = 𝜌𝑀𝑐𝐴 (6) 

Definidos os sistemas de equações e as condições de contorno, a resolução do sistema é realizada 
utilizando o método optimize.fsolve da biblioteca SciPy v1.5.4 do Python. O método fsolve encontra as 
raízes de uma função ou de um sistema de equações não-lineares, partindo de um dado palpite inicial. 

 
A função recebe como argumentos um arranjo com os palpites iniciais para cada variável e uma 

tupla com as condições de contorno de cada equação. Como retorno, a função devolve um arranjo com 
as soluções numéricas encontradas. 

Resultados 
Nesta seção, são descritos os resultados de cada caso apresentado na formulação do problema. 

DUTO SIMPLES ISOTÉRMICO 
Para o duto simples isotérmico, foram utilizadas duas condições de contorno diferentes para se 

validar o modelo. 
 
Nos dois casos, são utilizados valores equivalentes para se afirmar a validade dos cálculos. 

PRESSÕES EM AMBAS AS EXTREMIDADES 
Os valores do número de Mach, utilizados como palpites iniciais, são metade dos valores calculados 

do Mach crítico:  
 𝑀!"#$  /  2   ≅   0,438529  

Os valores de Mach de entrada e saída são, respectivamente:  

 𝑀_!_!   ≅   0,039485  

 𝑀_!_!   ≅   0,285610  

Como resultado, o valor de vazão mássica é:  

 𝑚   ≅   1,000404  𝑘𝑔/𝑠  

Os valores dos números de Mach de entrada e saída e o valor de vazão mássica condizem com os 
valores obtidos por Carscallen (2014). Esse é um indicativo da validade do modelo e, sendo assim, é 
possível utilizá-lo no caso seguinte. 
  



 
   
 

 
   
 

PRESSÃO E MACH EM UMA DAS EXTREMIDADES 
Os palpites iniciais para encontrar os valores da pressão e do número de Mach da outra extremidade 

são um décimo da pressão e dez vezes o Mach da outra extremidade. 
 
Os valores de Mach e pressão na saída são, respectivamente:  
 𝑝_!_!   ≅   150.000  𝑃𝑎  

 𝑀_!_!   ≅   0,285610  

Como resultado, o valor de vazão mássica é:  
 𝑚   ≅   1,000404  𝑘𝑔/𝑠  

Os valores da pressão e número de Mach da saída e o valor de vazão mássica condizem com os 
valores obtidos por Carscallen (2014) e com os valores obtidos no caso anterior. A confirmação é 
importante para validar os todos os cálculos utilizados até o momento. E com essa validação, é 
possível seguir com o incremento da complexidade do problema. 

 

DUTOS ISOTÉRMICOS EM SÉRIE 
Para os valores iniciais das pressões e dos números de Mach são utilizadas a média das pressões e 

um décimo do Mach crítico, respectivamente. 
 
Os valores de Mach e pressões são:  
 𝑝_!_!   ≅   1.073.553,24  𝑃𝑎  

 𝑀_!_!   ≅   0,008202  

 𝑀_!_!   ≅   0,008289  

 𝑝_!_!   ≅   268.388,31  𝑃𝑎  

 𝑀_!_!   ≅   0,033156  

 𝑀_!_!   ≅   0,059324  

Como resultado, o valor de vazão mássica é:  
 𝑚   ≅   0,207796  𝑘𝑔/𝑠  

Os valores obtidos para as pressões, Mach e vazões mássicas são fisicamente condizentes. Como a 
validação inicial mimetizando o primeiro caso foi confirmada, o método utilizado para a resolução dos 
cálculos é acertado. 

 

RAMIFICAÇÃO DE DUTOS ISOTÉRMICOS 
Para os palpites iniciais, foram utilizados diversos valores buscando a convergência do método 

numérico para o sistema de equações não-lineares. 



 
   
 

 
   
 

Para os palpites dos números de Mach do duto 5, utilizaram-se valores da mesma ordem de 
grandeza dos valores obtidos nos casos anteriores. Como os casos anteriores passaram pela validação 
com os valores da bibliografia, esses valores são palpites com uma boa acurácia. 

 𝑀_!_!   ≅ 0,039485  

 𝑀_!_!   ≅ 0,055171  

Os palpites para as pressões no nó são as médias das pressões nas extremidades. 
 𝑝_!"#   ≅   461.666,66  𝑃𝑎  

Já para os números de Mach dos dutos 6 e 7, os palpites iniciais seguiram a mesma lógica dos casos 
anteriores, utilizando valores derivados do Mach crítico. Nesse caso, variaram-se os valores buscando 
a convergência do método. 

 
Porém, o método se mostrou extremamente sensível ao palpite inicial. Mesmo com uma série de 

palpites para os números de Mach dos dutos 6 e 7, o programa não encontrou raízes para o sistema. 
Nesse caso, nota-se que a complexidade influenciou bastante na sensibilidade dos palpites iniciais para 
se determinar os valores que aproximam o sistema de suas raízes. 

Conclusão 
Originalmente, o trabalho visava a formulação de uma rede real de gasodutos. Mas como o tempo 

para o desenvolvimento foi limitado e o método numérico não foi eficiente após certo ponto, mudou-se 
o objetivo do projeto de maneira a se extrair o máximo do conteúdo até então produzido. 

 
A utilização da programação orientada a objetos facilita na compreensão e análise da formulação 

dos problemas. Com cada objeto e suas propriedades mapeadas, é possível realçar cada propriedade 
em estudo no código fonte. Essa análise é importante para simplificar o entendimento da programação 
e como ela se liga ao assunto em questão. No escopo deste trabalho, a POO permitiu a navegação pelas 
propriedades dos dutos e fluidos de maneira intuitiva. Essa navegação é importante para se entender 
como cada propriedade se comporta em cada objeto. 

 
O método numérico utilizado para a resolução das equações não-lineares se mostrou eficiente até 

certo ponto. Porém, ao se aumentar a complexidade do sistema de equações, o método se mostrou 
muito dependente da escolha de um bom palpite inicial para as iterações. Nos casos em que o palpite 
inicial não se aproximava das raízes do sistema, o método não convergia para uma solução plausível. 

 
Para os próximos passos, é de extrema importância a definição entre: trocar o método numérico 

para a resolução dos sistemas de equações ou definir uma metodologia acurada para a escolha dos 
palpites iniciais para o método numérico atual. 
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